Acta Crystallographica Section E

Structure Reports
 Online
 ISSN 1600-5368

Annie Michaud,
 Frédéric-Georges Fontaine* and Davit Zargarian

Département de Chimie, Université de Montréal, CP 6128, Succ. Centre-ville, Montréal, Québec, Canada H3C 3J7

Correspondence e-mail:
frederic.fontaine@chm.ulaval.ca

Key indicators

Single-crystal X-ray study
$T=220 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Some non-H atoms missing
Disorder in solvent or counterion
R factor $=0.051$
$w R$ factor $=0.156$
Data-to-parameter ratio $=17.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[Bis[tris(3,5-dimethylpyrazolyl)methane]-nickel(II)][tetrachloronickelate(II)]-methanol-water (1/1/1)

The title complex, $\quad\left[\mathrm{Ni}\left(\mathrm{HC}\left(3,5-\mathrm{Me}_{2} \mathrm{pz}\right)_{3}\right)_{2}\right]\left[\mathrm{NiCl}_{4}\right]$-$\mathrm{CH}_{3} \mathrm{OH} \cdot \mathrm{H}_{2} \mathrm{O}$, where $\mathrm{HC}\left(3,5-\mathrm{Me}_{2} \mathrm{pz}\right)_{3}$ is tris(3,5-dimethylpyrazolyl)methane $\left(\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{6}\right)$, contains two octahedral nickel(II) cationic complexes, each having $\overline{1}$ symmetry. The Ni atom in each cation is coordinated by six pyrazolyl rings of two chelating $\mathrm{HC}\left(3,5-\mathrm{Me}_{2} \mathrm{pz}\right)_{3}$ ligands, with $\mathrm{Ni}-\mathrm{N}$ distances between 2.0870 (16) \AA and 2.1094 (16) \AA. The anion consists of nickel(II) surrounded tetrahedrally by four Cl^{-}anions, with $\mathrm{Ni}-\mathrm{Cl}$ distances between 2.2547 (7) \AA and 2.2847 (7) \AA. There is also one methanol molecule and one disordered water molecule in the asymmetric unit.

Comment

The discovery of polypyrazolylmethane ligands by Trofimenko (1970) had a major impact in the field of inorganic and organometallic chemistry. In our constant search for new and efficient complexes that could catalyze a large range of chemical reactions, we became interested in the synthesis of nickel(II) polypyrazolyl complexes. In the course of our studies, the synthesis of $\left[\left\{\mathrm{HC}\left(3,5-\mathrm{Me}_{2} \mathrm{pz}\right)_{3}\right\}_{2} \mathrm{Ni}\right]\left[\mathrm{NiCl}_{4}\right]$ was performed $\left[\mathrm{HC}\left(3,5-\mathrm{Me}_{2} \mathrm{pz}\right)_{3}\right.$ is tris(3,5-dimethylpyrazolyl)methane]. The compound obtained here is similar to those previously reported by our group (Michaud et al., 2005) and by Reger et al. (2002), using, respectively, NiBr_{2} and $\mathrm{Ni}\left(\mathrm{BF}_{4}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ as precursors. The main difference between the crystal structures of $\left[\mathrm{Ni}\left(\mathrm{HC}\left(3,5-\mathrm{Me}_{2} \mathrm{pz}\right)_{3}\right)_{2}\right] \mathrm{Br}_{2}(\mathrm{I}-\mathrm{Br})$, $\left[\mathrm{Ni}\left(\mathrm{HC}\left(3,5-\mathrm{Me}_{2} \mathrm{pz}\right)_{3}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}\left(\mathrm{I}-\mathrm{BF}_{4}\right)$ and the title compound, ($\mathrm{I}-\mathrm{NiCl}_{4}$), is the different counterion. All three complexes crystallize in the monoclinic system, but ($\mathrm{I}-\mathrm{Br}$) and ($\mathrm{I}-\mathrm{BF}_{4}$) have C-centered unit cells, compared with a primitive cell for ($\mathrm{I}-\mathrm{NiCl}_{4}$), which is obtained as a mixed solvate of methanol and water.

The two crystallographically independent cations in the title compound are located on inversion centers (Figs. 1 and 2), resulting in only three unique $\mathrm{Ni}-\mathrm{N}$ bond distances for each

Received 1 April 2005 Accepted 11 April 2005 Online 16 April 2005
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Figure 1
A drawing of the first independent cation of $\left(\mathrm{I}-\mathrm{NiCl}_{4}\right)$, showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted. Primed atoms (') are related by the symmetry operator $(2-x, 1-y, 1-z)$.
(Table 1). In both cases, the $\mathrm{Ni}^{\mathrm{II}}$ cations adopt a pseudooctahedral geometry. The cis $\mathrm{N}-\mathrm{Ni}-\mathrm{N}$ angles within each tridentate ligand of $\left(\mathrm{I}-\mathrm{NiCl}_{4}\right)$ are equivalent [85.26(6)$\left.86.28(6)^{\circ}\right]$ and are comparable with those found in ($\mathrm{I}-\mathrm{Br}$) [85.65 (11) and $86.53(7)^{\circ}$] and ($\left(\mathrm{I}_{\mathrm{BF}}^{4}\right.$) [85.30 (9)-86.26 (9) ${ }^{\circ}$]; the average value of these angles in one compound is within the experimental error of the others $\left[85.8(3)^{\circ}\right.$ for $\left(\mathrm{I}-\mathrm{NiCl}_{4}\right)$, compared with $86.2(3)^{\circ}$ for $(\mathrm{I}-\mathrm{Br})$ and $85.9(3)^{\circ}$ for $\left(\mathrm{I}_{\left.-\mathrm{BF}_{4}\right)}\right)$. The range of $\mathrm{Ni}-\mathrm{N}$ distances varies only slightly in $\left(\mathrm{I}-\mathrm{NiCl}_{4}\right)$ [2.087 (2)-2.109 (2) Å] compared with ($\mathrm{I}-\mathrm{Br}$) ${ }^{[2.0754(17)-}$ 2.110 (3) \AA] and $\left(\mathrm{I}-\mathrm{BF}_{4}\right)$ [2.076 (2)-2.096 (2) $\left.\AA\right]$.

The anion contains $\mathrm{Ni}^{\mathrm{II}}$ coordinated tetrahedrally by four Cl^{-}anions. The average of the $\mathrm{Cl}-\mathrm{Ni}-\mathrm{Cl}$ angles is 109°, as expected, but one of the angles, $\mathrm{Cl} 1-\mathrm{Ni} 3-\mathrm{Cl} 2$, is significantly larger than the others $\left[117.43(3)^{\circ}\right]$. The $\mathrm{Ni} 3-\mathrm{Cl}$ distances vary from 2.2547 (4) to 2.2847 (7) \AA.

The methanolic H atom is hydrogen bonded to atom Cl 2 , as verified by the $\mathrm{O} 97 \cdots \mathrm{Cl} 2$ and $\mathrm{H} 97 \mathrm{D} \cdots \mathrm{Cl} 2$ distances of 3.332 (3) and $2.505 \AA$, respectively (Fig. 3). There is also a disordered water molecule in the asymmetric unit; this molecule was removed from the model using the SQUEEZE option in PLATON (Spek, 2003), thus leaving solvent voids of $56 \AA^{3}$. Finally, there are no chemically significant contacts between the cations and anions (Fig. 4).

Experimental

A solution of $\mathrm{HC}\left(3,5-\mathrm{Me}_{2} \mathrm{pz}\right)_{3}(440 \mathrm{mg}, 1.50 \mathrm{mmol})$ in boiling butanol was added to a suspension of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(330 \mathrm{mg}, 1.40 \mathrm{mmol})$ in boiling butanol. The reaction was stirred until all the solid suspension had dissolved and a deep-blue solid precipitated. The solution was cooled to room temperature and the resulting solid filtered. Subsequent washings with cold butanol and cold diethyl ether afforded the analytically pure compound $\left[\left(\mathrm{HC}\left(3,5-\mathrm{Me}_{2} \mathrm{pz}\right)_{3}\right)_{2} \mathrm{Ni}\right]\left[\mathrm{NiCl}_{4}\right](461 \mathrm{mg}$, 76% yield $)$. Diffusion of diethyl ether into a solution of [($\mathrm{HC}\left(3,5-\mathrm{Me}_{2}\right.$ $\left.\left.\mathrm{pz})_{3}\right)_{2} \mathrm{Ni}\right]\left[\mathrm{NiCl}_{4}\right]$ in methanol afforded X-ray quality crystals. Analysis, calculated for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{~N}_{12} \mathrm{Cl}_{4} \mathrm{Ni}_{2}$: C 44.90, H 5.18, N 19.64; found: C 44.47, H 5.26, N 19.47. Spectroscopic analysis: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, \delta\right.$, p.p.m.): 3.2, $-3.0,-10.0 ; \operatorname{IR}\left(\mathrm{KOH}, v, \mathrm{~cm}^{-1}\right): 3395(w)$,

Figure 2
A drawing of the second independent cation of $\left(\mathrm{I}-\mathrm{NiCl}_{4}\right)$, showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted. Primed atoms (') are related by the symmetry operator $(2-x, 1-y,-z)$.

Figure 3
A drawing of the anion and the methanol of $\left(\mathrm{I}-\mathrm{NiCl}_{4}\right)$, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The hydrogen bond is shown dashed.

3130-2922 (m), 1653 (w), 1567 (s), 1462-1368 (s), 1307 ($s), 1258(s)$, $1164(m), 1113(m), 1044(s), 987(m), 910(m), 862(s), 831(m), 706$ $(s), \quad 631(m), \quad 490(m) ; \quad$ UV-vis $\quad\left(\mathrm{CH}_{3} \mathrm{CN}, \quad \lambda \quad(\mathrm{nm}), \quad \varepsilon\right.$ $\left[\left(\mathrm{mol} \mathrm{dm}^{-3}\right)^{-1} \mathrm{~cm}^{-1}\right]:(575,102),(618,152),(658,135),(701,127)$, (892, 55); Pf > $593 \mathrm{~K} ; \mu_{\text {eff }} 4.24$.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{6}\right)_{2}\right]\left[\mathrm{NiCl}_{4}\right] \cdot \mathrm{CH}_{4} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}$	$D_{x}=1.447 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=906.07$	$\mathrm{Cu} \mathrm{K} \mathrm{\alpha}$ radiation
Monoclinic, $P 2_{1} / c$	Cell parameters from 36297
$a=10.2998(2) \AA$	\quad reflections
$b=18.5245(3) \AA$	$\theta=2.4-72.6^{\circ}$
$c=21.9660(3) \AA$	$\mu=3.85 \mathrm{~mm}^{-1}$
$\beta 94.118(1)^{\circ}$	$T=220(2) \mathrm{K}$
$V=4180.26(12) \AA^{3}$	Plate, blue
$Z=4$	$0.30 \times 0.30 \times 0.08 \mathrm{~mm}$

Data collection

Bruker SMART 2K/Platform CCD	8242 independent reflections
area-detector diffractometer	7048 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.091$
Absorption correction: multi-scan	$\theta_{\max }=72.6^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996 $)$	$h=-12 \rightarrow 12$
$T_{\min }=0.287, T_{\max }=0.740$	$k=-22 \rightarrow 21$
49482 measured reflections	$l=-27 \rightarrow 26$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.156$
$S=1.13$
8242 reflections
485 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Ni1-N3	2.0870 (16)	N21-N22	1.370 (2)
Ni1-N1	2.1004 (15)	N22-C24	1.361 (2)
Ni1-N5	2.1094 (16)	N23-C27	1.341 (3)
N1-C2	1.327 (2)	N23-N24	1.359 (2)
$\mathrm{N} 1-\mathrm{N} 2$	1.369 (2)	N24-C29	1.360 (2)
N3-C12	1.328 (2)	N25-C32	1.332 (2)
N3-N4	1.367 (2)	N25-N26	1.365 (2)
N4-C14	1.355 (2)	N26-C34	1.361 (2)
N5-C7	1.332 (2)	C22-C23	1.395 (3)
N5-N6	1.370 (2)	C23-C24	1.368 (3)
N6-C9	1.359 (2)	C27-C28	1.396 (3)
C2-C3	1.400 (3)	C28-C29	1.359 (3)
C3-C4	1.362 (3)	C32-C33	1.394 (3)
C12-C13	1.390 (3)	C33-C34	1.353 (3)
C13-C14	1.368 (3)	Ni3-Cl4	2.2547 (7)
Ni2-N21	2.0929 (16)	Ni3-Cl1	2.2568 (7)
Ni2-N23	2.1010 (15)	$\mathrm{Ni} 3-\mathrm{Cl} 3$	2.2649 (7)
Ni2-N25	2.1076 (15)	$\mathrm{Ni} 3-\mathrm{Cl} 2$	2.2847 (7)
N21-C22	1.326 (2)		
$\mathrm{N} 3-\mathrm{Ni} 1-\mathrm{N} 3{ }^{\text {i }}$	180	$\mathrm{N} 23{ }^{\text {ii }}-\mathrm{Ni} 2-\mathrm{N} 23$	180
$\mathrm{N} 3-\mathrm{Ni} 1-\mathrm{N} 1^{\text {i }}$	85.76 (6)	N21-Ni2-N25	94.74 (6)
N3-Ni1-N1	94.24 (6)	$\mathrm{N} 2{ }^{1 i}{ }^{-} \mathrm{Ni} 2-\mathrm{N} 25$	85.26 (6)
$\mathrm{N} 1{ }^{\mathrm{i}}$ - $\mathrm{Ni} 11-\mathrm{N} 1$	180	$\mathrm{N} 23{ }^{\text {ii }}-\mathrm{Ni} 2-\mathrm{N} 25$	86.28 (6)
$\mathrm{N} 3-\mathrm{Ni} 1-\mathrm{N} 5^{\text {i }}$	94.40 (6)	N23-Ni2-N25	93.72 (6)
N3-Ni1-N5	85.59 (6)	$\mathrm{N} 25-\mathrm{Ni} 2-\mathrm{N} 25^{\text {ii }}$	180
$\mathrm{N} 1{ }^{\text {i }}$ - $\mathrm{Ni} 11-\mathrm{N} 5$	86.27 (6)	$\mathrm{Cl} 4-\mathrm{Ni} 3-\mathrm{Cl} 1$	107.78 (3)
N1-Ni1-N5	93.73 (6)	$\mathrm{Cl} 4-\mathrm{Ni} 3-\mathrm{Cl} 3$	108.01 (2)
$\mathrm{N} 5^{\mathrm{i}}$ - $\mathrm{Ni} 11-\mathrm{N} 5$	180	$\mathrm{Cl} 1-\mathrm{Ni} 3-\mathrm{Cl} 3$	109.46 (3)
$\mathrm{N} 21-\mathrm{Ni} 2-\mathrm{N} 21^{\text {ii }}$	180	$\mathrm{Cl} 4-\mathrm{Ni} 3-\mathrm{Cl} 2$	106.58 (3)
$\mathrm{N} 21-\mathrm{Ni} 2-\mathrm{N} 23{ }^{\text {ii }}$	94.60 (6)	$\mathrm{Cl} 1-\mathrm{Ni} 3-\mathrm{Cl} 2$	117.42 (3)
N21-Ni2-N23	85.39 (6)	$\mathrm{Cl} 3-\mathrm{Ni} 3-\mathrm{Cl} 2$	107.24 (3)

Symmetry codes: (i) $-x+2,-y+1,-z+1$; (ii) $-x+2,-y+1,-z$.

H atoms were constrained using a riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H or $1.2 U_{\text {eq }}($ parent $)$ for all others. The maximum electron-density peak of $1.05 \mathrm{e}^{\AA^{-3}}$ was located $0.89 \AA$ from atom Cl 2

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1017 P)^{2}\right. \\
& \quad+0.294 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.00 \\
& \Delta \rho_{\max }=1.05 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.57 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 4
A drawing of the unit-cell contents of $\left(\mathrm{I}-\mathrm{NiCl}_{4}\right)$. Ellipsoids are drawn at the 50% probability level and dashed lines indicate hydrogen bonds. H atoms have been omitted from the cation.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: $U d M X$ (local program).

Financial support from the Natural Sciences and Engineering Research Council of Canada and from the Fonds FQRNT du Ministère de l'Éducation du Québec is gratefully acknowledged.

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Bruker (1999). SAINT (Version 6.06) and SMART (Version 5.059). Bruker AXS Inc., Madison, Wisconsin, USA.
Michaud, A, Fontaine, F.-G. \& Zargarian, D. (2005). Acta Cryst. E61, m784m786.
Reger, D. L., Little, A. L. \& Smith, M. D. (2002). Inorg. Chem. 41, 4453-4460. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Trofimenko, S. (1970). J. Am. Chem. Soc. 92, 5118-5126.

